
TOTEM Toolbox
Integration of new algorithms

Project Title : TOTEM : TOolbox for Traffic Engineering Methods
Contributor : Simon Balon, Olivier Delcourt, Jean Lepropre, Fabian

Skivée, Gaël Monfort, Guy Leduc, Bruno Quoitin
(UCL)

Abstract : -

- 3 C OR C++ CODE Page 1 of7

Contents

1 Introduction 1

2 Java 1

3 C or C++ code 1

4 Overview (The CSPF Example) 2
4.1 New CSPF package and class. 2
4.2 Create the native methods. 3
4.3 Generate the C header file. 4
4.4 Writing the native method implementation. 4
4.5 Compiling the CSPF C implementation as a C library. 5

5 Going into more details 5
5.1 Java types and C types. 5
5.2 Returning information and accessing Java member variables 6
5.3 Throwing Exceptions from native world. 6
5.4 Callbacks . 6

6 Recommendations 7

1 Introduction

This document explains how to integrate a new algorithm intothe toolbox. Being able to easily
integrate a new algorithm was one of the main requirements ofthe toolbox architecture.

2 Java

All algorithms integrated in the toolbox implements the interfaceTotemAlgorithm. There are
three main interfaces used by the routing algorithms in particular, i.e.SPF,LSPPrimaryRouting
andLSPBackupRouting. If the algorithm you plan to integrate does not map to one of these
interfaces, the first thing to do will be to define a new one. It should be quite easy just by looking
at the ones we already defined. You should also try to manage the parameters as we did.

From then, if your algorithm is written in Java, you are readyto integrate it by developing the
methods present in the interface. If your algorithm is written in C or C++, read the next section. If
your algorithm is written in Perl, you might want to look at JPL1. But we did not investigate JPL.
If your algorithm is written in another language, it would still be possible to interoperate with the
toolbox using our XML format.

3 C or C++ code

Java Native Interface (JNI)2 is the key to the integration of algorithms written in C or C++into
the toolbox written in Java.

JNI allows Java code that runs within a Java Virtual Machine to operate with libraries written in
other languages such as C and C++. The JNI framework lets native methods utilize Java objects in

1Seehttp://press.oreilly.com/pub/pr/698
2http://java.sun.com/docs/books/tutorial/native1.1/

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://press.oreilly.com/pub/pr/698
http://java.sun.com/docs/books/tutorial/native1.1/
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 2 of7

the same way that Java code uses these objects. A native method can create Java objects, including
arrays and strings, and then inspect and use these objects toperform its tasks. A native method can
also inspect and use objects created by Java application code. A native method can even update
Java objects that it created or that were passed to it, and these updated objects are available to
the Java application. Thus, both the native language side and the Java side of an application can
create, update, and access Java objects and then share theseobjects between them. Native methods
can also easily call Java methods. With JNI, we can use the advantages of the Java programming
language from the native method. In particular, we can catchand throw exceptions from the native
method and have these exceptions handled in the Java application.

All the code examples and commands are given for C code. We will explain how, for example,
to integrate a CSPF routing algorithm written in C into the toolbox. All packages names are
shortened (and so are class names, method names,. . . accordingly). You should systematically
add the rootbe.ac.ulg.montefiore.run.totem. in front of them.

4 Overview (The CSPF Example)

Here are the steps that must be followed :

1. In therepository package, create a new package calledCSPF, and inside it a new class
of the same name. This class will implementrepository.model.LSPPrimaryRouting
and thus the corresponding 4 methods.

2. Create a series of native methods that you intend to call from the four preceeding Java
methods, and add the code lines necessary to load the librarycreated in step 5.

3. Recompile the toolbox using ANT. Generate a header file containing the native methods
prototypes(formal signature for the native methods).

4. Write the implementation of the native methods in C as partof your CSPF C implementation.

5. Recompile your native CSPF implementation as a shared library file.

We will now detail these five steps.

4.1 New CSPF package and class

So, the code of the newCSPF class in therepository.CSPF package should look like this.

package r e p o s i t o r y . CSPF ;
import r e p o s i t o r y . model .∗ ;

pub l i c c l a s s CSPF implements LSPPr imaryRout ing {
pub l i c To temAc t ionL i s t routeLSP (LSPPr imaryRout ingParameter param)

throws Rou t ingExcep t i on , NoRouteToHostExcept ion {
re turn n u l l ;

}

pub l i c To temAc t ionL i s t routeNLSP (L i s t param)
throws Rou t ingExcep t i on , NoRouteToHostExcept ion {

re turn n u l l ;
}

pub l i c vo id s t a r t () {

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 3 of7

}

pub l i c vo id s t o p () {

}
}

4.2 Create the native methods

The native CSPF implementation needs the topology nodes andlinks information. So, we will
explain how to pass the nodes from Java database to the CSPF database. We need to define a
native methodjniAddNode(nodeId). In thestart method, we call this native method. We
must also not forget to load the C library. We decide to call itcspf. This will correspond to the
filenamelibcspf.so.

We suppose that the CSPF implementation only uses integers as node identifiers. So, we have
written a method that gives an integer representation from aNode object, this method is called
getCorrespondingInt. From there, we call the native methodjniAddNode and we catch
exceptions that could be thrown by this native method (see section 5.3).

package be . ac . u lg . m o n t e f i o r e . run . to tem . r e p o s i t o r y . CSPF ;

import be . ac . u lg . m o n t e f i o r e . run . to tem . r e p o s i t o r y . model .∗ ;
import be . ac . u lg . m o n t e f i o r e . run . to tem . topo logy . model . Topology ;
import be . ac . u lg . m o n t e f i o r e . run . to tem . topo logy . model . Node ;
import be . ac . u lg . m o n t e f i o r e . run . to tem . topo logy . f a c a d e . TopologyManager ;

pub l i c c l a s s CSPF implements LSPPr imaryRout ing {

p r i v a t e n a t i v e s t a t i c vo id jn iAddNode (i n t nodeId) ;

s t a t i c {
System . l o a d L i b r a r y (" c s p f ") ;

}

pub l i c vo id s t a r t () {
Topology topo = TopologyManager . g e t I n s t a n c e () . ge tTopo logy () ;

i n t nbNodes = topo . getNodes () . getNode () . s i z e () ;

f o r (i n t i =0 ; i <nbNodes ; i ++){
Node node = (Node) topo . getNodes () . getNode () . g e t (i) ;

t r y {
jn iAddNode (node . g e t C o r r e s p o n d i n g I n t) ;

}
ca tch (Excep t i on e) {

e . p r i n t S t a c k T r a c e () ;
}

}
}
. . .

}

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 4 of7

4.3 Generate the C header file

To generate the C header file that comprises all native methods declarations, first recompile the
toolbox using ANT.

Then, proceed as follows: Addbuild/classes/ to your classpath (on linux, just go to
that directory and typeexport CLASSPATH=$CLASSPATH:.) From there, run the command
javah -jni PACKAGE.repository.CSPF.CSPFwherePACKAGE stands forbe.ac.ulg.montefio
This will generate the header filebe_ac_ulg_montefiore_run_totem_repository_CSPF_CSPF.h
in build/classes/which looks like this

inc lude < j n i . h>

∗ C l a s s : be_ac_u lg_mon te f i o re_run_ to tem_repos i to r y_CSPF_CSPF
∗ Method : jn iAddNode
∗ S i g n a t u r e : (I)V
∗ /

JNIEXPORT vo id JNICALL
Java_be_ac_u lg_monte f io re_run_ to tem_repos i to ry_CSPF_CSPF_ jn iAddNode
(JNIEnv ∗ , j c l a s s , j i n t) ;

This header file provides a C function signature for the implementation of the native method
jniAddNode defined in theCSPF class. Notice that the method that we will have to implement
in C has a more complex name and different arguments. The third argument, ofjint type,
corresponds to the argument thatjniAddNode had in its Java definition. We will see that this
jint type can be used exactly as C integer. But generally, it’s notthe case, i.e. arguments
must be accessed through C functions found in the JNI libraryjni.h. The other two parameters
are required for every native method. The first parameter is aJNIEnv interface pointer. It is
through this pointer that the native code accesses parameters and objects passed to it from the Java
application. The second parameter isjclass, which references the method’s Java class3.

4.4 Writing the native method implementation

We will now write the implemention of the native method. We will suppose that the existing
CSPF implementation already has some kind of interface (seesection6) functions. For example, a
function likeaddNodeTo DB(DataBase,nodeId) is already accessible from your C code.
Create a new file calledjniCSPFInterfa ce.c. Firstly, include the JNI library and the header
file previously created. You should probably also include the header file that contains the CSPF
implementation interface functions (likeaddNodeToDB). Just fill in the implementation of the
native method.jniCSPFInterface.c should look like this

inc lude " be_ac_u lg_monte f i o re_run_ to tem_repos i to ry_CSPF_CSPF . h "
inc lude < j n i . h> / / t h e JNI l i b r a r y
inc lude c s p f _ a p i . h / / i n t e r f a c e f u n c t i o n s d e c l a r a t i o n s

/∗
∗ C l a s s : b e _ a c _ u lg _ m o n t e f io r e _ ru n _ to t em _ r ep o s i to r y _ C S PF_ C S PF
∗ Method : jn iAddNode
∗ S i g n a t u r e : (I)V
∗ /

JNIEXPORT vo id JNICALL
Java_be_ac_u lg_monte f i o re_run_ to tem_repos i to ry_CSPF_CSPF_ jn iAddNode

3Note that if we had not declared jniAddNode as a static method, this second parameter would have been a reference
to the current instance of the object

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 5 GOING INTO MORE DETAILS Page 5 of7

(JNIEnv ∗env , j c l a s s c l a s s , j i n t nodeId)
{

addNodeToDB (DataBase , nodeId) ;
}

The pointer to the database must be made available to the native function by another native
function called before.

4.5 Compiling the CSPF C implementation as a C library

Now that “everything” is done, let’s generate the library file. Here is the command line to compile
the library in C.

ld -Bshareable -fPIC -o libcspf.so jniCSPFInterface.o OTHER_OBJ_FILES -lz -lm

Where jniCSPFInterface.o has been compiled with
-I\$JAVA_HOME/include/ -I\$JAVA_HOME/include/linux/ (replace\$JAVA_HOME

by the corresponding value).
Now, you just have to call thestart() method of your CSPF algorithm somewhere in the

toolbox code (:-)) and you’re ready.

5 Going into more details

So, after this brief example, we’ll detail some more things that we think are interesting. The
objective of this documentation is not to replace existing JNI documentation.

5.1 Java types and C types

In the simple CSPF example, we only had a basic integer argument NodeIdwhich the C environ-
ment gets as a newjint type. Thisjint can basically be used as Cint type.

Basically, all Java primitive types can be accessed directly by the native method in C4.
But non-primitive Java types can never be accessed directlybut well through functions defined

in the JNI C library (jni.h) 5.
For example, suppose we declare in Java a new float array, and then pass it to a native method

as argument

f l o a t [] f l o a t A r r a y = new f l o a t [SIZE] ;
/ / . . . s t o r e i n f o r m a t i o n i n t h i s a r r a y
j n ime thod (f l o a t A r r a y) ;

We will then get this array as ajfloatArray type element. To access information stored in
this array, we will use:

j s i z e l e n = (∗ env)−> GetAr rayLeng th (env , PACKAGE_floatArray) ;/ / g e t t h e l e n g t h
o f t h e a r r a y
j f l o a t ∗body = (∗ env)−> GetF loa tA r rayE lemen t s (env , PACKAGE_floatArray , 0) ;/ /
env i s t h e env i r onmen t p o i n t e r

f o r (i n t j =0 ; j < l e n ; j ++){
p r i n t f (‘ ‘ Con ten t a t p o s i t i o n \%d : \% f \ n ’ ’ , j , body [j]) ;

4Seehttp://java.sun.com/docs/books/tutorial/native1.1/integrating/types.html
5Seehttp://java.sun.com/docs/books/tutorial/native1.1/implementing/string.html

andhttp://java.sun.com/docs/books/tutorial/native1.1/implementing/array.html

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://java.sun.com/docs/books/tutorial/native1.1/integrating/types.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/string.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/array.html
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 5 GOING INTO MORE DETAILS Page 6 of7

}
(∗ env)−> R e l e a s e F l o a t A r r a y E l e m e n t s (env , PACKAGE_floatArray , body , 0) ;

We invite you to look at the code ofjni_interface.c in src/C/jniDAMOTE/jni
which shows interesting examples on how we manage to access the information stored in multi-
dimensional arrays.

5.2 Returning information and accessing Java member variables

jni_interface.ccode also shows how we manage to create new arrays (and arraysof arrays)
in the native world that are then returned to the Java environment.

When we had to return other information, we used the possibility offered by JNI to access
Java member variables. That is, we define in the calling Java class some variables that we then
access from the native world using the environment pointer and modify from the native world. The
modified value is then available in the Java environment6. You will also find interesting examples
in jni_interface.c.

5.3 Throwing Exceptions from native world

When an error occurs in the native code, it’s interesting to be able to throw an exception from the
native code that is then caught in the Java environment.

Let’s see what our native method implementation would become with exception handling.

JNIEXPORT vo id JNICALL
Java_be_ac_u lg_monte f i o re_run_ to tem_repos i to ry_CSPF_CSPF_ jn iAddNode
(JNIEnv ∗env , j c l a s s c l a s s , j i n t nodeId)
{

i f (addNodeToDB (DataBase , nodeId) < 0)/ / e r r o r o ccu red
{

j c l a s s newExcCls ;

/ / f i n d t h e c l a s s c o r r e s p o n d i n g t o R o u t i n g E x c e p t i o n i n t h e Java e n v i r o n m e n t
newExcCls =
(∗ env)−> F i n d C l a s s (env , " be / ac / u lg / m o n t e f i o r e / run / to tem / r e p os i t o r y / model

/ Rou t i ngExcep t i on ") ;

i f (newExcCls == NULL) {
f p r i n t f (s t d e r r , " Unable t o f i n d t h e e x c e p t i o n c l a s s , g i v i n g up \ n ") ;
re turn ; / / come back t o Java

}

(∗ env)−>ThrowNew (env , newExcCls ,NULL) ;
re turn ;

}
}

5.4 Callbacks

Sometimes, if you have no other choice, you may want to call Java methods from C native code7.
This is feasible, but slow (and we met some bugs when playing with call-backs).

6Seehttp://java.sun.com/docs/books/tutorial/native1.1/implementing/field.html
7Seehttp://java.sun.com/docs/books/tutorial/native1.1/implementing/method.html

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://java.sun.com/docs/books/tutorial/native1.1/implementing/field.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/method.html
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 6 RECOMMENDATIONS Page 7 of7

6 Recommendations

The integration of a native algorithm should be facilitatedby the definition of a clear interface.
Let’s take the concrete case of our CSPF algorithm. This CSPFalgorithm computes routes
based on the topology information it finds in its proprietarydatabase. This database must be
filled at one moment. If it is filled using well defined “interface” functions likeaddNode,
addLink,. . . rather than by directly accessing the database structure, it will facilitate JNI in-
tegration. Because, in thestart() method, we will only have to “call”8 these methods.

8i.e. to define a native method like jniAddNode as we did in our example, the corresponding method implementation
being only a call to the C function addNode

Toolbox website :http://totem.run.montefiore.ulg.ac.be
TOTEM website :http://totem.info.ucl.ac.be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

	Introduction
	Java
	C or C++ code
	Overview (The CSPF Example)
	New CSPF package and class
	Create the native methods
	Generate the C header file
	Writing the native method implementation
	Compiling the CSPF C implementation as a C library

	Going into more details
	Java types and C types
	Returning information and accessing Java member variables
	Throwing Exceptions from native world
	Callbacks

	Recommendations

