TOTEM Toolbox
Integration of new algorithms

Project Title : TOTEM : TOolbox for Traffic Engineering Methods

Contributor : Simon Balon, Olivier Delcourt, Jean Lepropre, Fabian
Skivée, Gaél Monfort, Guy Leduc, Bruno Quoitin
(UCL)

Abstract : -

- 3 CORC++ CODE Page 1 of7

Contents

1 Introduction 1
2 Java 1
3 CorC++code 1
4 Overview (The CSPF Example) 2

41 NewCSPFpackageandclass., 2
4.2 Createthenativemethods, 3
4.3 GeneratetheCheaderfile 4
4.4 Writing the native method implementation. 4
4.5 Compiling the CSPF C implementationasaClbrary 5

5 Going into more details 5
5.1 Javatypesand Ctypes o i e e e 5
5.2 Returning information and accessing Java membervesab 6
5.3 Throwing Exceptions fromnativeworld 6
54 Callbacks. 6

6 Recommendations 7

1 Introduction

This document explains how to integrate a new algorithm theotoolbox. Being able to easily
integrate a new algorithm was one of the main requirementiseafoolbox architecture.

2 Java

All algorithms integrated in the toolbox implements theenfdiceTot emAl gor i t hm There are
three main interfaces used by the routing algorithms iri@dar, i.e.SPF, LSPPr i nar yRout i ng
andLSPBackupRout i ng. If the algorithm you plan to integrate does not map to onéheée
interfaces, the first thing to do will be to define a new onehtitdd be quite easy just by looking
at the ones we already defined. You should also try to manageattameters as we did.

From then, if your algorithm is written in Java, you are re&ljntegrate it by developing the
methods present in the interface. If your algorithm is eritin C or C++, read the next section. If
your algorithm is written in Perl, you might want to look atL}PBut we did not investigate JPL.
If your algorithm is written in another language, it wouldldie possible to interoperate with the
toolbox using our XML format.

3 CorC++code

Java Native Interface (JNI)? is the key to the integration of algorithms written in C or Cifto
the toolbox written in Java.

JNI allows Java code that runs within a Java Virtual Machingerate with libraries written in
other languages such as C and C++. The JNI framework leteemagthods utilize Java objects in

!Seehttp://press.oreilly.con pub/pr/ 698
2http://java. sun. conf docs/ books/tutorial /nativel. 1/

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://press.oreilly.com/pub/pr/698
http://java.sun.com/docs/books/tutorial/native1.1/
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 2 af

the same way that Java code uses these objects. A nativedhethareate Java objects, including
arrays and strings, and then inspect and use these objgagdom its tasks. A native method can
also inspect and use objects created by Java applicatian dodative method can even update
Java objects that it created or that were passed to it, arsg tinedated objects are available to
the Java application. Thus, both the native language siddéhenJava side of an application can
create, update, and access Java objects and then sharelijeese between them. Native methods
can also easily call Java methods. With JNI, we can use thengalyes of the Java programming
language from the native method. In particular, we can cachthrow exceptions from the native
method and have these exceptions handled in the Java digplica

All the code examples and commands are given for C code. Wexgilain how, for example,
to integrate a CSPF routing algorithm written in C into thellb@x. All packages names are
shortened (and so are class names, method names,... agbtgrdiYou should systematically
add the roobe. ac. ul g. nont efi ore. run. t ot em in front of them.

4 Overview (The CSPF Example)
Here are the steps that must be followed :

1. Inther eposi t or y package, create a new package callS#F, and inside it a new class
of the same name. This class willimplemerfposi t ory. nodel . LSPPri mar yRout i ng
and thus the corresponding 4 methods.

2. Create a series of native methods that you intend to aath fthe four preceeding Java
methods, and add the code lines necessary to load the litneayed in step 5.

3. Recompile the toolbox using ANT. Generate a header fileéadoing the native methods
prototypes(formal signature for the native methods).

4. Write the implementation of the native methods in C asgiarbur CSPF C implementation.

5. Recompile your native CSPF implementation as a shareatyilfile.

We will now detail these five steps.

4.1 New CSPF package and class

So, the code of the ne@SPF class in the eposi t or y. CSPF package should look like this.

package repository .CSPF;
import repository.modelsx;

public class CSPF implements LSPPrimaryRouting{
public TotemActionList routeLSP (LSPPrimaryRoutingParameteargm)
throws RoutingException, NoRouteToHostException {
return null ;

}

public TotemActionList routeNLSP (List param)
throws RoutingException, NoRouteToHostException {
return null ;

}

public void start() {

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 3 af

}

public void stop () {
}

4.2 Create the native methods

The native CSPF implementation needs the topology nodedirsksdinformation. So, we will
explain how to pass the nodes from Java database to the C3fbase. We need to define a
native method ni AddNode(nodel d) . Inthest art method, we call this native method. We
must also not forget to load the C library. We decide to callsipf . This will correspond to the
filenamel i bcspf . so.

We suppose that the CSPF implementation only uses integersde identifiers. So, we have
written a method that gives an integer representation frado@de object, this method is called
get Cor r espondi ngl nt . From there, we call the native methpdi AddNode and we catch
exceptions that could be thrown by this native method (setoses. 3).

package be.ac.ulg. montefiore.run.totem.repository .CSPF;
import be.ac.ulg.montefiore.run.totem.repository.model.
import be.ac.ulg.montefiore.run.totem.topology.model. Topyy ;
import be.ac.ulg.montefiore.run.totem.topology.model.Node;
import be.ac.ulg.montefiore.run.totem.topology.facade. TogyManager;
public class CSPF implements LSPPrimaryRouting {
private native static void jniAddNode(int nodeld);
static {
System.loadLibrary("cspf");
}
public void start () {
Topology topo = TopologyManager. getlnstance (). getTogppy ();
int nbNodes = topo.getNodes ().getNode (). size ();

for (int i=0;i<nbNodes;i++){
Node node = (Node)topo.getNodes ().getNode (). get(i);

try {
jniAddNode (node.getCorrespondinglnt);
}

catch(Exception e){
e.printStackTrace ();
}

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 4 OVERVIEW (THE CSPF EXAMPLE) Page 4 af

4.3 Generate the C header file

To generate the C header file that comprises all native msttedlarations, first recompile the
toolbox using ANT.

Then, proceed as follows: Addui | d/ cl asses/ to your classpath (on linux, just go to
that directory and typexport CLASSPATH=$CLASSPATH: .) From there, run the command
javah -jni PACKAGE. r eposi t ory. CSPF. CSPFwherePACKAGE stands fobe. ac. ul g. nont efi o
This will generate the header filee_ac_ul g_nontefi ore_run_totem repository CSPF_CSPF. h
in bui | d/ cl asses/ which looks like this

#include <jni.h>

x Class: be ac_ulg_montefiore _run_totem_repository ESESPF

x Method: jniAddNode

x Signature: (I1)V

*/

JNIEXPORT void JNICALL
Java_be _ac_ulg_montefiore _run_totem repository CSPFPF_jniAddNode
(INIEnv %, jclass , jint);

This header file provides a C function signature for the inaetation of the native method
j ni AddNode defined in theCSPF class. Notice that the method that we will have to implement
in C has a more complex name and different arguments. The #igument, of i nt type,
corresponds to the argument thati AddNode had in its Java definition. We will see that this
j i nt type can be used exactly as C integer. But generally, it'stmetcase, i.e. arguments
must be accessed through C functions found in the JNI ligraiy. h. The other two parameters
are required for every native method. The first parameterJddllaEnv interface pointer. It is
through this pointer that the native code accesses paresvagtd objects passed to it from the Java
application. The second parametej & ass, which references the method’s Java cfass

4.4 Writing the native method implementation

We will now write the implemention of the native method. Wdlwguppose that the existing
CSPF implementation already has some kind of interfaces@eteon6) functions. For example, a
function likeaddNodeTo DB(Dat aBase, nodel d) is already accessible from your C code.
Create a new file callgdni CSPFI nt er f a ce. c. Firstly, include the NI library and the header
file previously created. You should probably also include lteader file that contains the CSPF
implementation interface functions (likeddNodeToDB). Just fill in the implementation of the
native methodj ni CSPFI nt er f ace. ¢ should look like this

#include "be_ac_ulg_montefiore_run_totem_repository CSPF_ESP
#include <jni.h> // the JNI library
#include cspf_api.h// interface functions declarations

[

*

Class: be ac_ulg_montefiore run_totem_repository CSPF_CSPF
x Method: jniAddNode
Signature: (1)V

*

x/

JNIEXPORT void JNICALL
Java_be_ ac_ulg _montefiore_run_totem repository CSPFPF_jniAddNode

Note that if we had not declared jniAddNode as a static mettiisisecond parameter would have been a reference
to the current instance of the object

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 5 GOING INTO MORE DETAILS Page 5 of7

(JNIEnv xenv, jclass class, jint nodeld)

{
addNodeToDB (DataBase, nodeld);

}

The pointer to the database must be made available to theerfatiction by another native
function called before.

4.5 Compiling the CSPF C implementation as a C library

Now that “everything” is done, let's generate the librarg fiHere is the command line to compile
the library in C.

| d -Bshareable -fPIC -0 libcspf.so jni CSPFInterface.o OTHER OBJ _FILES -1z -|

Where jniCSPFInterface.o has been compiled with

-1\ $JAVA HOVE/ i ncl ude/ -1\$IJAVA HOVE/ i ncl ude/ | i nux/ (replacé $JAVA HOVE
by the corresponding value).

Now, you just have to call thet art () method of your CSPF algorithm somewhere in the
toolbox code (:-)) and you're ready.

5 Going into more details

So, after this brief example, we’ll detail some more thingattwe think are interesting. The
objective of this documentation is not to replace existiNg documentation.

5.1 Javatypes and C types

In the simple CSPF example, we only had a basic integer angiiNeele| d which the C environ-
ment gets as a hejd nt type. Thisj i nt can basically be used asi@t type.

Basically, all Java primitive types can be accessed diréstithe native method in €.

But non-primitive Java types can never be accessed didaatiywell through functions defined
in the JNI C library { ni . h) ®.

For example, suppose we declare in Java a new float arrayhangbéss it to a native method
as argument

float[] floatArray = new float[SIZE];
[l ... store information in this array
jnimethod (floatArray);

We will then get this array asjaf | oat Ar r ay type element. To access information stored in
this array, we will use:

jsize len = env)->GetArrayLength(env, PACKAGE_floatArray);// get the length
of the array

jfloat xbody = (xenv)->GetFloatArrayElements (env, PACKAGE_floatArray, 0)//
env is the environment pointer

for (int j=0;j<len;j++){
printf(‘*Content at position \%d: \%f\n’",j, body[j]);

“Seeht t p: //j ava. sun. comf docs/ books/tutorial / nativel. 1/integrating/types. htni
5Seehtt p: //j ava. sun. conf docs/ books/ t utori al / nativel. 1/i npl enenti ng/ string. htm
andhttp://java. sun. coni docs/ books/tutorial /nativel.1/inplementing/array. htmn

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://java.sun.com/docs/books/tutorial/native1.1/integrating/types.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/string.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/array.html
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 5 GOING INTO MORE DETAILS Page 6 of7

}
(xenv)->ReleaseFloatArrayElements (env, PACKAGE_ floatArrayodly, 0);

We invite you to look at the code gfni _i nterface. cinsrc/ C/jni DAMOTE | ni
which shows interesting examples on how we manage to adeessformation stored in multi-
dimensional arrays.

5.2 Returning information and accessing Java member variales

j ni _i nterface. ccode also shows how we manage to create new arrays (and af&yays)
in the native world that are then returned to the Java envigori.

When we had to return other information, we used the podgilaffered by JNI to access
Java member variables. That is, we define in the calling J&&s csome variables that we then
access from the native world using the environment poimtdmaodify from the native world. The
modified value is then available in the Java environfhevibu will also find interesting examples
injni _interface.c.

5.3 Throwing Exceptions from native world

When an error occurs in the native code, it’s interestinga@lble to throw an exception from the
native code that is then caught in the Java environment.
Let's see what our native method implementation would bexwith exception handling.

JNIEXPORT void JNICALL
Java_be_ ac_ulg _montefiore_run_totem repository CSPFPF_jniAddNode
(JNIEnv xenv, jclass class, jint nodeld)

{
if (addNodeToDB(DataBase, nodeld) < 0)/ error occured

{

jclass newExcCls;

/I find the class corresponding to RoutingException in the Java environment

newExcCls =

(xenv)->FindClass(env,"be/ac/ulg/ montefiore/run/totem/respory / model
/RoutingException");

if (newExcCls == NULL){
fprintf(stderr ,"Unable,to_find_the exception,class ,,giving,_up\n");
return; // come back to Java

}

(xenv)—>ThrowNew (env ,newExcCls ,NULL);
return ;

5.4 Callbacks

Sometimes, if you have no other choice, you may want to ced d@ethods from C native colle
This is feasible, but slow (and we met some bugs when playitigcall-backs).

5Seeht t p: //j ava. sun. conf docs/ books/tutorial /nativel. 1/i npl enenting/field. htm
"Seehtt p: //j ava. sun. conf docs/ books/ t utori al / nativel. 1/i npl enent i ng/ met hod. ht m

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://java.sun.com/docs/books/tutorial/native1.1/implementing/field.html
http://java.sun.com/docs/books/tutorial/native1.1/implementing/method.html
http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

- 6 RECOMMENDATIONS Page 7 of7

6 Recommendations

The integration of a native algorithm should be facilitatgdthe definition of a clear interface.
Let's take the concrete case of our CSPF algorithm. This C&B6&rithm computes routes
based on the topology information it finds in its proprietagtabase. This database must be
filled at one moment. If it is filled using well defined “inteci&’ functions likeaddNode,
addLi nk,... rather than by directly accessing the database steyatuwill facilitate IJNI in-
tegration. Because, in tts ar t () method, we will only have to “calP’ these methods.

8i.e. to define a native method like jniAddNode as we did in cwameple, the corresponding method implementation
being only a call to the C function addNode

Toolbox website htt p: //totem run. nont efi ore. ul g. ac. be
TOTEM website :http://totem i nfo.ucl.ac. be

http://totem.run.montefiore.ulg.ac.be
http://totem.info.ucl.ac.be

	Introduction
	Java
	C or C++ code
	Overview (The CSPF Example)
	New CSPF package and class
	Create the native methods
	Generate the C header file
	Writing the native method implementation
	Compiling the CSPF C implementation as a C library

	Going into more details
	Java types and C types
	Returning information and accessing Java member variables
	Throwing Exceptions from native world
	Callbacks

	Recommendations

